The role of extracellular RNA-carrying vesicles in cell differentiation and reprogramming

Growing evidence suggests that transcriptional regulators and secreted RNA molecules encapsulated within membrane vesicles modify the phenotype of target cells. Membrane vesicles, actively released by cells, represent a mechanism of intercellular communication that is conserved evolutionarily and involves the transfer of molecules able to induce epigenetic changes in recipient cells. Extracellular vesicles, which include exosomes and microvesicles, carry proteins, bioactive lipids, and nucleic acids, which are protected from enzyme degradation. These vesicles can transfer signals capable of altering cell function and/or reprogramming targeted cells.

exosome rna

Combined factors that modulate cell fate and functions. a Soluble growth factors may act as paracrine or autocrine mechanisms by interacting with cell receptors directly or after binding to matrix; extracellular matrix and direct cell-to-cell contact may in turn direct cell fate in a defined microenvironment. The interaction between stem and stromal cells is reciprocal. In addition, oxygen tension and metabolic products may modulate cell phenotype. Extracellular vesicles are part of this complex regulatory network of factors involved in the interaction between cells. b Schematic representation of different modes of action of extracellular vesicles. lncRNA long noncoding RNA, miRNA microRNA

Classification of vesicles into exosomes, originating from the membrane of the endosomal compartment, and microvesicles, derived from plasma membrane budding, is based on their biogenesis . However, given the overlapping features of exosomes and microvesicles, and the variability of content and biogenesis depending on cellular type, the term extracellular vesicles (EVs) has been suggested to include the different types of vesicles…

(read more…)

Quesenberry PJ, Aliotta J, Deregibus MC, Camussi G. (2015) Role of extracellular RNA-carrying vesicles in cell differentiation and reprogramming. Stem Cell Res Ther 6(1):153. [article]

Leave a Reply

Your email address will not be published. Required fields are marked *