Bio-inspired engineering of nanoparticles for drug delivery

The engineering of future generations of nanodelivery systems aims at the creation of multifunctional vectors endowed with improved circulation, enhanced targeting and responsiveness to the biological environment. Moving past purely bio-inert systems, researchers have begun to create nanoparticles capable of proactively interacting with the biology of the body. Nature offers a wide-range of sources of inspiration for the synthesis of more effective drug delivery platforms. Because the nano-bio-interface is the key driver of nanoparticle behavior and function, the modification of nanoparticles’ surfaces allows the transfer of biological properties to synthetic carriers by imparting them with a biological identity. Modulation of these surface characteristics governs nanoparticle interactions with the biological barriers they encounter.

Building off these observations, researchers from the University of Illinois and the Houston Methodist Research Institute provide here an overview of virus- and cell-derived biomimetic delivery systems that combine the intrinsic hallmarks of biological membranes with the delivery capabilities of synthetic carriers. They describe the features and properties of biomimetic delivery systems, recapitulating the distinctive traits and functions of viruses, exosomes, platelets, red and white blood cells. By mimicking these biological entities, we will learn how to more efficiently interact with the human body and refine our ability to negotiate with the biological barriers that impair the therapeutic efficacy of nanoparticles.

Nature’s sources of inspiration for biomimetic nanoparticles

exosomes

Schematic depicting the features of viruses and various cell types that can be endowed onto the surface of nanoparticles, enabling them to overcome the biological barriers they encounter in the body. Transfer of these characteristics can be achieved through top-down and bottom-up approaches that allow for surface functionalization through the incorporation of ligands or the use of cell ghosts.

Parodi A, Molinaro R, Sushnitha M, Evangelopoulos M, Martinez JO, Arrighetti N, Corbo C, Tasciotti E. (2017) Bio-inspired engineering of cell- and virus-like nanoparticles for drug delivery. Biomaterials 147:155-168. [abstract]

Leave a Reply

Your email address will not be published. Required fields are marked *

*